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Abstract

In this paper, we illustrate the use of the INFOBIOTICS WORKBENCH platform, designed
to model and analyse stochastic P systems, by modelling basic synthetic Boolean gates and
analysing them using some computational techniques: simulation, verification and biocompi-
lation.

1 Introduction
Membrane computing [1] is a branch of natural computing inspired by the hierarchical structure
of living cells with various compartments inside them, or the network of cells occurring in tissues
and organs, and key functions describing molecular interactions of species and macromolecules.
It emphasises the compartmentalised nature of biological systems, and supports the study of the
computational power, complexity and efficiency of its models, and deals with their applications in
various fields.

We base our system on a particular model in membrane computing called a P system, consisting
of a membrane structure and rewriting rules operating on multisets of objects [1]. P systems mimic
chemical reactions and transportation across membranes or cellular division or death processes by
repeatedly applying rules until rules cannot be applied anymore. P systems provide a clear mapping
of different regions and compartments of a biological systems into membranes. Each molecular
species is associated with an object in the multiset corresponding to a membrane mapping the region
or compartment where the molecule is located. Since P systems are close to biology, they are
a suitable formalism for representing biological systems, especially (multi-)cellular systems and
molecular interactions taking place in different locations of living cells [2].
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In order to model different systems, several versions of P systems have been proposed. Stochas-
tic P (SP) systems [3] are a probabilistic extension of P systems, where constants are associated with
rules in order to compute their probabilities and execution time, respectively, according to the Gille-
spie algorithm [4]. SP systems are a natural, intuitive and amenable formalism, capturing stochastic
dynamics of biological and chemical systems [5]. The INFOBIOTICS WORKBENCH (IBW) tool is
a software platform designed to model and analyse stochastic P systems. IBW permits applying
various computational techniques, such as simulation and verification.

In this paper, we illustrate how IBW utilises these techniques in the analysis of biological sys-
tems, in particular synthetic biology models. In addition, we will present our initial results on the
automatic construction of genetic devices using a biomatter compilation module. We will illustrate
our approach on two basic genetic devices: the AND and OR gates.

We note that the goal of this work is in silico modelling and analysis. Both in vivo and in vitro
aspects are outside of the scope of this paper.

2 INFOBIOTICS WORKBENCH

The IBW tool [6, 7] enables prototyping systems and synthetic biology models exhibiting molecular
interactions. The tool provides support for modeling, simulation, verification and optimisation of
SP system models.

2.1 Modeling
In IBW, system models are constructed using stochastic P systems, augmented with a two-dimensional
lattice representation to capture the spatial aspect of a biological system and the structure of mem-
branes distributed geometrically within it. The geometrical representation of membranes permits
modelling molecular exchange between adjacent cells.

IBW provides a dedicated DSL (Domain Specific Langauge) for SP systems, called LPP systems,
supported by a graphical model editor. The language is very modular in the sense that modules and
libraries can be reused by different SP system models, and multiple copies of SP systems can be
distributed in different parts of a geometrical lattice, which facilitates the modelling of bacterial
colonies containing different types of cells.

2.2 Simulation
IBW implements a stochastic simulation algorithm, called MCSS [5], based on a multi-compartmental
extension of the Gillespie algorithm [4]. The compartmental nature of the algorithm allows perform-
ing simulations without a need to flatten models that have multiple cells distributed geometrically.

IBW displays simulation results in various formats, e.g. time series, histograms, bars, 3D heat-
maps and animations, using a GUI. Users can view selected compartments and species based on all
or selected simulation runs. Users can also configure the data units of the model components.

2.3 Verification
IBW’s verification component, called PMODELCHECKER, performs model checking using third
party model checkers. Since SP models are stochastic, PMODELCHECKER currently employs the
probabilistic model checking tools PRISM [8] and MC2 [9].

PRISM [8] is a widely used tool, developed to model check probabilistic systems, e.g. Contin-
uous Time Markov Chains. In PRISM, properties are expressed using probabilistic temporal logics,
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Figure 1: The biocompiler’s workflow. From unstructured sets of parts and user requisites, to com-
plete devices to viable DNA sequences.

e.g. Continuous Stochastic Logic (CSL) [10], which allows expressing quantitative information
useful for a precise and fine grain analysis.

MC2 [9] is a statistical model checking tool, which evaluates properties against a set of sim-
ulation runs using statistical methods, e.g. Monte Carlo. Unlike numerical methods, this method
prevents an exhaustive analysis, increasing the performance significantly. In addition to probabilistic
aspect, MC2 also permits expressing quantities regarding ‘maximum/minimum’ values and ‘deriva-
tive’ of species’ concentrations.

2.4 Biocompilation
Through simulation and verification, the user is able to design an in silico construct that meets their
criteria. The next step is then to test the design in vivo in an actual organism. We are currently devel-
oping a biomatter compilation module, to be integrated into the new version of IBW (in progress).
It combines known biology, a database of genetic parts, and user knowledge, to automatically build
a viable DNA sequence that can be used in organism.

Once the user has specified the functional parts for the construct (e.g. promoters, protein coding
sequences), the biocompiler uses built-in genetics knowledge to add parts not necessary for the
design but mandatory for genetic sequences (e.g. RBS, spacers), as well as restriction enzyme sites
for future experiments. All the parts are then arranged so as to make biological sense, through
a mapping to a constraint solving problem. Each part is assigned a position (an integer) and all
biological (e.g. non-overlapping devices, parts order within a device given their types) or user-
defined requisites are translated into a integer programming problem. We use the Java library JaCoP
([11]) to find an optimal arrangement.

The user can also provide in-house knowledge to add constraints on the resulting sequence, for
example enforcing the direction of a device or the relative position of parts. This is done through a
very simple language (ATGC, for Assistant To Genetic Compilation [12]).
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Figure 2: The logic AND and OR gates.

For example, if the user wants to enforce the relative positions of two promoters, they use the
command:

ATGC ARRANGE Promoter2 Promoter1

They can also ask for a device to the implemented in the reverse direction:

ATGC myDevice DIRECTION REVERSE

In this case, the parts are re-arranged so that the device starts with a terminator and ends with a
promoter, and the sequences are reverse-complemented.

Figure 1 describes the compiler’s work flow. From an unstructured set of parts and user-defined
constraints (1), the biocompiler completes the devices with extra parts (2) and finds an optimal
arrangement (3). The part sequences are found in public databases ([13, 14, 15]) or provided by the
user.

3 Two Genetic Logic Gates
Synthetic Boolean logic gates have been studied in various papers, including [16, 17, 18]. The
devices discussed in this paper are constructed using the genetic parts of the XOR gate designed
in [16], where the analysis of the circuits was done using the synthetic biology tools GEC [19],
Eugene [20] and Proto [21]. In this paper, we will use the IBW tool, which differs from these tools
in that it allows multicellular modelling and analysis, and integrates third-party model checking
tools to support verification.

Here, we consider two basic logic gates: AND and OR, whose logic diagrams and truth tables
are given in Figure 2. Both gates use two inducers, aTc and IPTG, as input (provided in the
beginning) and use GFP as output. aTc and IPTG disable the activities of TetR and LacI proteins,
respectively. The genetic designs of the gates are presented in Figure 3.
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Figure 3: The genetic devices functioning as an AND and OR gate.

Figure 3a illustrates a genetic AND gate, which receives two input signals: aTc and IPTG. In
this system, the transcription factors LacI and TetR are expressed by a gene controlled by the same
promoter. The aTc molecules repress TetR, and IPTG molecules repress LacI, to prevent them
from inhibiting the production of GFP by binding to the corresponding promoter which upregulates
the expression of GFP. If both IPTG and aTc are set to high, then neither LacI nor TetR can
inhibit the GFP production.

Figure 3b illustrates a genetic OR gate, comprising two mechanisms. Each mechanism leads to
the production of GFP, when it is activated. The first mechanism is repressed by LacI while the
second is repressed by TetR. Therefore, GFP can be produced from the former when IPTG is set
to high and from the latter when aTc is set to high.

The stochastic model comprises a set of SP system rules, governing the kinetic and stochastic
behaviour of the system. Table 11 presents the rewriting rules and the kinetic constants (taken from
[16]) of the devices described above. If we consider the AND gate, Rules r1 to r3 describe the
expression the LacI and TetR proteins from gene LacI TetR, regulated by the same promoter.

1Here, we assume that LacI can’t bind PLac while TetR is bound to PTet and vice versa, and that one repressor
blocks recruitment at both sites.
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Table 1: Kinetic rules for the Boolean gates.

(a) AND gate

Rule Kinetic
constant

r1 : gene LacI TetR
k1→ gene LacI TetR + mRNA LacI TetR k1 = 0.12

r2 : mRNA LacI TetR
k2→ mRNA LacI TetR + LacI k2 = 0.1

r3 : mRNA LacI TetR
k3→ mRNA LacI TetR + TetR k3 = 0.1

r4 : LacI + IPTG
k4→ LacI-IPTG k4 = 1.0

r5 : TetR + aTc
k5→ TetR-aTc k5 = 1.0

r6a : gene GFP + LacI
k6a→ gene GFP-LacI k6a = 1.0

r6b : gene GFP-LacI
k6b→ gene GFP + LacI k6b = 0.01

r7a : gene GFP + TetR
k7a→ gene GFP-TetR k7a = 1.0

r7b : gene GFP-TetR
k7b→ gene GFP + TetR k7b = 0.01

r8 : gene GFP
k8→ gene GFP + GFP k8 = 1.0

r9 : GFP
k9→ k9 = 0.001

r10 : LacI
k10→ k10 = 0.01

r11 : TetR
k11→ k11 = 0.01

r12 : mRNA LacI TetR
k12→ k12 = 0.001

(b) OR gate

Rule Kinetic
constant

r1 − r5 same as the rules r1 − r5 of the AND gate

r6a : gene GFP1 + LacI
k6a→ gene GFP1-LacI k6a = 1.0

r6b : gene GFP1-LacI
k6b→ gene GFP1 + LacI k6b = 0.01

r7a : gene GFP2 + TetR
k7a→ gene GFP2-TetR k7a = 1.0

r7b : gene GFP2-TetR
k7b→ gene GFP2 + TetR k7b = 0.01

r8 : gene GFP1
k8→ gene GFP1 + GFP k8 = 1.0

r9 : gene GFP2
k9→ gene GFP2 + GFP k9 = 1.0

r10 − r13 same as the rules r9 − r12 of the AND gate

Rules r4 and r5 describe the binding of LacI and IPTG and TetR and aTc, respectively. Rules
r6a and r6b describe the inhibition activity of LacI, i.e. its binding to the promoter that upregulates
the GFP production. Rules r7a and r7b define the same process for TetR. Rule r8 describes the
expression of GFP. Rules r9 to r12 define the degradation process of various molecular species.
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Model Specification
The LPP language allows rules to be grouped into higher level units, called modules. A simplified
expression of a protein can be defined as

simpleProteinExpression({X,Y},{c_1},{l}) =
{
rules:
r1: [ gene_X ]_l -c_1 -> [ gene_X + Y ]_l
}

and similarly the expression of two proteins is given as

constitutiveProteinExpressionTwoGenes({X,Y},{c_1,c_2,c_3},{l}) =
{
rules:
r1: [ gene_X_Y ]_l -c_1-> [ gene_X_Y + mRNA_X_Y ]_l
r2: [ mRNA_X_Y ]_l -c_2-> [ mRNA_X_Y + X ]_l
r3: [ mRNA_X_Y ]_l -c_3-> [ mRNA_X_Y + Y ]_l
}

In a similar way there are defined modules for protein binding and debinding and protein degrada-
tion. With these generic modules, the AND gate, for instance, can be defined using modules for the
expression of LacI and TetR, for binding LacI to IPTG, TetR to aTc, LacI to gene GFP,
TetR to gene GFP, and debinding, the expression of GFP and finally degradation reactions for
GFP, LacI, TetR and mRNA LacI TetR. The OR gate is defined in a similar way. The complete
formalization including the auxiliary modules can be found online2.

4 Analysis
In this section, we present the results of various analyses, which can be used to infer whether the
devices function according to their desired behaviour. The stochastic model based on Table 1 will be
considered as specifications for the experiments to follow. The complete models and experimental
results can be accessed online2.

4.1 Simulation
Figure 4 illustrates the simulation results (based on 100 simulation runs), plotting the (mean) GFP
amount over time for the stochastic models describing an AND and OR gate. The simulation results
are obtained using IBW’s simulator, MCSS, which can also display results as (3D) heat-map anima-
tions for a better visualisation. Figure 5 illustrates the same simulation results as a heat-map (the
snapshot was taken at the time point 500 seconds). In the figure, the corners of the lattice represent
different Boolean combinations. Namely, top-left represents aTc=0 and IPTG=0; top-right repre-
sents aTc=0 and IPTG=1000; bottom-left represents aTc=1000 and IPTG=0; and bottom-right
represents aTc=1000 and IPTG=1000. As can be seen from Figures 4 and 5 , the genetic AND
and OR devices behave like an AND and OR gate, respectively.

2http://www.dcs.shef.ac.uk/∼konur/models/genetic-gates

7



aTc=0, IPTG=0
aTc=1000, IPTG=0
aTc=0, IPTG=1000
aTc=1000, IPTG=1000

(a) AND gate

aTc=0, IPTG=0
aTc=1000, IPTG=0
aTc=0, IPTG=1000
aTc=1000, IPTG=1000

(b) OR gate

Figure 4: Simulation results of GFP amount over time for the stochastic models describing an AND
and OR gate.

(a) AND gate (b) OR gate

Figure 5: Heat-map visualisation of the simulation results.

4.2 Verification
IBW allows users to perform formal verification, using model checking. By verifying a formal
property against a formal model, we can exhaustively analyse the likelihood that the system satisfies
the system requirements. IBW currently integrates the PRISM and MC2 model checkers. IBW auto-
matically translates SP system models to the input format that the model checking tools requires. To
facilitate the construction of formal properties we have developed a natural language query (NLQ)
tool [6], providing assistance to non-expert users to build logical properties from a set of natural
language queries.

In standard logic gates, a threshold value at the input to a logic gate determines whether a par-
ticular input is interpreted as 0 or 1. For example, any voltage value above 3 V is considered as
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Figure 6: Verification results.

1. Since there is not such standard threshold values for genetic gates, we choose a value for this
particular design. To analyse the behaviour of the genetic devices formally, we verify the following
property using PRISM:

“What is the probability that GFP exceeds Thr at time t?”

which is expressed in CSL as

P=?

[
true U[t,t] GFP ≥ Thr

]
.

Figure 6 shows the model checking results for a threshold value of 100 over the time points up to
2500 seconds. The results clearly confirm the desired behaviour.

Instead of a threshold value, we can also compare the relative GFP concentrations to observe
the behaviour. Assume that GFPij denotes the GFP concentration for different input combinations.
Namely, if i=0 (resp. j=0), then aTc=0 (resp. IPTG=0), and if i=1 (resp. j=1), then aTc=1000
(resp. IPTG=1000). Then, the property

“What is the probability that GFP11 is at least 5 times more than GFP10, GFP01 and GFP00?”

is formally expressed as

P=?

[
true U[t,t] (GFP11 ≥ 5.GFP10 ∧ GFP11 ≥ 5.GFP01 ∧ GFP11 ≥ 5.GFP00)

]
.

For this query, we have obtained 0.96 (for t = 500 seconds), confirming the desired behaviour.

4.3 Biocompilation
Figure 7 shows the result of the biocompilation from the specifications decided upon during the
design stage. The only functional parts specified by the user are promoters and genes. No extra
constraints were required. The biocompiler automatically completed the devices with RBS and
terminators and found a viable arrangement for the parts. The sequences for the parts were looked
up in the biobricks database, and are as following:

9



Constitutive
Promoter

LacI Tetr PLacI PtetR GFP

Construct for the AND operator

GFPLacI Tetr
Constitutive
Promoter

PLacI GFP PtetR

Construct for the OR operator

Figure 7: Constructs resulting from the biocompilation. Each operator is made of two or three
devices. RBS and terminators have been added to complete the devices, and the sequences were
found from the BioBricks database.

• Generic constitutive promoter: (biobricks entry: BBa J23100)

• LacI: lacI repressor from E. coli (biobricks entry: BBa C0012)

• Tetr: tetracycline repressor from transposon Tn10 (biobricks entry: BBa C0040)

• PLacI: lacI regulated promoter (biobricks entry: BBa R0010)

• PtetR: TetR repressible promoter (biobricks entry: BBa R0040)

• GFP: green fluorescent protein derived from jellyfish Aequeora victoria wild-type (biobricks
entry: BBa E0040)

5 Conclusions
In this paper, we have presented how the INFOBIOTICS WORKBENCH software platform utilises
the modelling and analysis of biological systems expressed in stochastic P systems using various
computational techniques, e.g. simulation and verification. We have also presented our initial results
on the automatic construction of genetic devices using a biomatter compilation module. We have
illustrated our approach on two basic genetic devices: the AND and OR gates. The genetic parts
used in the design of these gates are based on those used in [16]. We are planning to use other
designs (based on different genetic parts), e.g. [17, 18].

We are currently working on a new version of IBW, which will incorporate a set of methods for
specifying, modeling, testing and simulating biological systems, and will facilitate these processes
for biologists. In addition, the new version will also include the biocompilation module that we are
currently developing. The future version of the biocompiler will have an optimisation module, with
an integrated RBS calculator [22] and codon optimisation [23], with the overall aim to be as close
to the kinetic parameters decided upon in the simulation stage.

Acknowledgements. SKo and MG acknowledge the EPSRC (EP/I031812/1) support. CL and
SKa are supported by EPSRC (EP/I03157X/1). HF, DS and NK’s work is supported by EPSRC
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